Final Exam

Philosophical Logic 2025/2026

Exercise 1 [30 points]

Show that

- 1. **Fuzzy Logic L**_{\aleph_1}: $p \to (p \to q) \not\models_{\text{deg}} p \to q$ (truth values [0, 1], Łukasiewicz semantics, degree consequence)
- 2. Truthmaker semantics: $p \land p \models_{TM} p$
- 3. **Supervaluations** (global consequence relation): the following meta-inference (conditional proof) fails: if $\varphi \models_g \chi$ and $\psi \models_g \chi$, then $\varphi \lor \psi \models_g \chi$. (i.e., find formulas φ, ψ, χ s.t. $\varphi \models_g \chi$ and $\psi \models_g \chi$ but $\varphi \lor \psi \not\models_g \chi$) *Hint:* you may use without proof that for any $\varphi, \varphi \models_g \Delta \varphi$.
- 4. **Non-monotonic logic:** the following rule is derivable in **P**:

If $\varphi \vdash \psi \supset \chi$ and $\varphi \vdash \psi$, then $\varphi \vdash \chi$, where \supset is the material conditional $\varphi \supset \psi \equiv \neg \varphi \lor \psi$ (i.e., you need to provide a proof-theoretic derivation of $\varphi \vdash \chi$ in **P** taking $\varphi \vdash \psi \supset \chi$ and $\varphi \vdash \psi$ as additional axioms; you are not allowed to use completeness of preferential consequence)

5. **Probability:** $p \to q, r \to l \models_P (p \lor r) \to (q \lor l)$, where ' \to ' is the indicative conditional, defined using conditional probability $P(\varphi \to \psi) = P(\psi|\varphi) = \frac{P(\psi \land \varphi)}{P(\varphi)}$.

Tip: The last two facts of Exercise 1 require more effort. You might consider working on the subsequent exercises and returning to Exercise 1 afterwards.

Exercise 2 [20 points]

Consider the Łukasiewicz Ł3 three-valued logic.

- 1. Show that the binary connective * defined by the truth table below is not expressible in £3. In particular, show that for any formula φ whose only sentence letters are p and q and has no other connective besides \neg , \lor , \land and \rightarrow , there is a valuation v s.t. $v(\varphi) \neq v(p * q)$.
- 2. Show that the binary connective \vee_w (the Weak Kleene disjunction) defined by the truth table below is expressible in Ł3. In particular, find a formula φ which contains only the sentence letters p, q and the connectives \neg , \vee , \wedge , \rightarrow , s.t. $\varphi \equiv p \vee_w q$. Motivate your answer.

*				٧,	<i>w</i>	1	i	0
1	i	i	0	1		1	i	1
i	i	<i>i</i> 0	0	i		i	i	i
0	0	0	0	0		1	i	1 i 0

1

Exercise 3 [25 points]

This exercise concerns similarity analysis of counterfactuals.

Frames: $F = \langle W, \{ \prec_w \}_{w \in W} \rangle$ with each \prec_w a strict partial order on $W_w \subseteq W$.

Connectedness: for all w, for all $u, v \in W_w$, either u = v, or $u \prec_w v$, or $v \prec_w u$

CEM: $(\varphi \leadsto \psi) \lor (\varphi \leadsto \neg \psi)$.

- 1. Show that, under the Limit Assumption, Connectedness holds *iff* CEM is valid on *F*:
 - (a) Connectedness ⇒ CEM
 - (b) Connectedness \leftarrow CEM
- 2. Drop the Limit Assumption. Show that the ⇒ direction fails, while the ⇐ direction still holds:
 - (a) Connectedness ⇒ CEM
 - (b) Connectedness \leftarrow CEM

Exercise 4 [25 points]

According to *truthmaker maximalism*, every truth is made true by some portion of reality.

Which problems do statements like "Unicorns do not exist" pose for truthmaker maximalism? What arguments can a truthmaker maximalist use to accommodate such statements while still maintaining a maximalist position? Do you find such possible arguments convincing? Motivate your answer.